Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects.

نویسندگان

  • Anselm Omoike
  • Jon Chorover
چکیده

Reactions at ionizable functional groups in extracellular polymeric substances (EPS) from Bacillus subtilis are found to affect aqueous phase conformation and adsorption to mineral surfaces. Characterization by HPSEC, XPS, and FTIR indicates a wide range in apparent molecular mass (0.57-128 kDa), with functional group composition depending on cell growth phase (exponential vs stationary) and location in suspension (free vs cell-bound). ATR-FTIR spectroscopy shows complexation and dissociation of protons on acidic functional groups that result in alpha-helical protein conformation at pH < 2.6 and random coil (unordered) conformation at higher pH (>6). EPS exhibit higher affinity for adsorption to alpha-FeOOH than amorphous SiO(2) because of surface charge effects. Increased amide II band intensity and an amide I band shift to higher frequency indicate changes in protein structure upon adsorption. Goethite-EPS spectra show emergent vibrations consistent with P-O-Fe bonding, which suggests a role of phosphodiester groups in the adsorption reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida.

The effect of extracellular polymeric substances (EPS) of Gram-positive Bacillus subtilis and Gram-negative Pseudomonas putida on Cu(II) adsorption was investigated using a combination of batch adsorption, potentiometric titrations, Fourier transform infrared spectroscopy. Both the potentiometric titrations and the Cu(II) adsorption experiments indicated that the presence of EPS in a biomass sa...

متن کامل

Cloning and Enhanced Expression of an Extracellular Alkaline Protease from a Soil Isolate of Bacillus clausii in Bacillus subtilis

in the detergent industry. In this study, the extracellular alkaline serine protease gene, aprE, from Bacillusclausii was amplified by PCR and further cloned and expressed in B. subtilis WB600 using the pWB980 expression vector. Protease activity of the recombinant B. subtilis WB600 harboring the plasmid pWB980/aprEreached up to 1020 U/ml, approximately 3-folds higher than the nativ...

متن کامل

Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms

Extracellular polymeric substances (EPS) are continuously produced by bacteria during their growth and metabolism. In soils, EPS are bound to cell surfaces, associated with biofilms, or released into solution where they can react with other solutes and soil particle surfaces. If such reaction results in a decrease in EPS bioaccessibility, it may contribute to stabilization of microbial-derived ...

متن کامل

The effect of Fe on Si adsorption by Bacillus subtilis cell walls: insights into non-metabolic bacterial precipitation of silicate minerals

Si adsorption onto Bacillus subtilis and Fe and Al oxide coated cells of B. subtilis was measured both as a function of pH and of bacterial concentration in suspension in order to gain insight into the mechanism of association between silica and silicate precipitates and bacterial cell walls. All experiments were conducted in undersaturated solutions with respect to silicate mineral phases in o...

متن کامل

Biological Control of African Violets Root-Knot Disease by the Used of Extracellular Protease Bacillus

The present study explored the efficacy of Bacillus spp. and protease production for biocontrol of the root-knot nematode Meloidogyne javanica in African violet media. Among 100 bacterial isolates from various soils, the highest nematode mortality was observed for treatments with isolate GM-18, which was identified as Bacillus subtilis based on cultural and morphological characteristics and 16S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 5 4  شماره 

صفحات  -

تاریخ انتشار 2004